Descarga de datos del mercado eléctrico.

Jugar con los datos abiertos que se proporcionan en las diferentes fuentes de información de este mercado es una buena manera de intentar entenderlo. En mi cuenta de twitter publico diariamente gráficos generados con datos descargados desde estas fuentes. Es un mercado ciertamente complejo, con una regulación extensa, y con mucho ruido mediático. Todo esto facilita la opacidad y dificultad de entender este mercado, que por otra parte se lleva, y más con la subida de precios de estos tiempos, una parte material del presupuesto de servicios básicos de las familias. Mi intención, publicando estas líneas de código (por otra parte extremadamente simple) es ayudar un poco en hacerlo más transparente.

¿Como lo he organizado?

He preparado un notebook de Jupyter mostrando una serie de funciones, en Python, para facilitar la descarga de datos desde fuentes relacionadas con el mercado eléctrico:

He preparado cinco funciones:

  • catalogo_esios(token): que permite bajar el catálogo completo de la api de esios, para, posteriorment, buscar de manera fácil los identificadores que necesitamos para nuestro trabajo
  • download_esios : que permite bajar datos de cualquier indentificador, entre dos fechas determinadas, para posteriormente trabajar sobre ellos.
  • download_ree : idem que el caso anterir pero sobre apidatos de REE
  • download_gas : que nos permite bajar desde https://mibgas.es el precio de gas GDAES del día siguiente
  • downlaod_gas_rd: que nos permite bajar desde https://mibgas.es el precio de gas correspondiente al mecanismo de compensación del RD10/2022

A modo de caso práctico, he añadido un ejemplo de descarga de datos junto con un gráfico para mostrarlos visualmente. He procurado elegir tipos diferentes de gráficos para cada gráfico por si es de ayuda.

Aquí pueden encontrar el notebook.

Me alegraré mucho si alguien lo encuentra de utilidad…

Mercamadrid

Hemos preparado un código para bajar datos de la actividad comercial de mayoristas en Mercamadrid. Estos datos se pueden bajar desde este link del portal de datos abiertos del Ayuntamiento de Madrid.

La información esta estructura en una serie de campos tales como:

  • Fecha inicial del segmento de tiempo al que se refieren los datos
  • Fecha final del segmento de tiempo al que se refieren los datos
  • Descripción de la mercancia
  • Código de la mercancia
  • Origen de la mercancia
  • Código de este origen
  • Peso de la mercancia en Kilos
  • Precio mínimo registrado
  • Precio máximo registrado
  • Precio más frecuente

He intentado gestionar y minimizar el tamaño del pandas con el modelo propuesto por Matt Harrison, estoy haciendo un esfuerzo para seguir el «chaining» siempre que sea posible.

Presentamos el código necesario para bajar y preparar adecuadamente la información desde su repositorio en datos Madrid, y preparamos una rejilla de datos con los mismos..
En cada subgráfica, una por cada producto, presentamos la evolución del consumo como barras (eje «y» izquierda) )y la evolución de precios (eje «y» derecha). Para claridad se han codificado las barras según temperatura del mes..

Leyes lógicas

Logic Lane by Chris Andrews is licensed under CC-BY-SA 2.0

Vamos a enumerar las principales leyes lógicas que nos permiten trabajar sobre expresiones complejas con varias proposiciones. Básicamente son leyes que rigen la Lógica Proposicional. Las enumeramos agrupadas según el número de proposiciones, añadiendo un último bloque con las condicionales.

La lista de leyes está basada en el primer capítulo del libro «Lenguaje matemático: conjuntos y números» de los autores Miguel Delgado Pineda y María José Muñoz Bouzo.

Leer más »

Desde Bernouilli hasta la Exponencial

Imagen de Jakub Orisek en Pixabay

Introducción a la discusión

En este ejercicio vamos a estudiar como se relacionan modelos a priori estancos como un simple Bernouilli con la distribución exponencial. Como pensando en sucesos singulares, que se repiten en el tiempo, podemos llegar a entender la distribución de los tiempos de espera entre esos sucesos. Empecemos…

Leer más »

Inferencia Bayesiana vs Frecuentista

Introducción..un poco de teoría

En este trabajo vamos a estudiar las dos aproximaciones más conocidas en los métodos de inferencia estadística: el método bayesiano y el frecuentista. Un búsqueda rápida en Google confirma el gran número de interesantes discusiones al respecto. Personalmente me decanto por el Bayesiano, al final de este trabajo explicaré por qué.

Photo by Kaboompics .com on Pexels.com
Leer más »

Análisis de la variación del cambio Euro Dolar. Riesgo de cambio.

Photo by Karolina Grabowska on Pexels.com

Vamos a preparar un script que nos permita evaluar las variaciones que hay en los cambios de moneda, y nos de una idea de que riesgos estamos corriendo cuando fijamos los cambios. Las series históricas las sacamos de la libreria https://pypi.org/project/investpy/ (construída por Álvaro Bartolomé del Canto @alvarob96 at GitHub) que obtiene los datos de la web de información financiera http://www.investing.com

Leer más »

Forma de pensar Bayesiana

Imagen de moritz320 en Pixabay

Un recordatorio: el teorema de Bayes

Licencia : https://creativecommons.org/licenses/by-nc-sa/4.0/

Empecemos con el uso «estandar» del Teorema. Lo vamos a aplicar a un problema clásico, el de las bolsas con bolas de colores:

Sean dos bolsas indistinguibles, la primera, llamémosla bolsa 1, tiene 4 bolas verdas y una bola roja, la segunda, llamémosla bolsa 2, tiene 2 bolas verdes y tres bolas rojas. Se elije al azar una de las bolsas y obtenemos una bola verde, ¿qué probabilidad hay de que esta venga de la bolsa 1?

Leer más »